Hybrid Multiscale Methods for Hyperbolic and Kinetic Problems
نویسندگان
چکیده
In these notes we present some recent results on the development of hybrid methods for hyperbolic and kinetic equations with multiple scales. The main ingredients in the schemes are a suitable merging of particle methods in non stiff regimes with high resolution shock capturing techniques in stiff ones. The key aspect in the development of the algorithms is the choice of a suitable hybrid representation of the solution. First, after a brief review on sampling methods and Monte Carlo techniques, we introduce the hybrid schemes for hyperbolic systems with relaxation and present numerical applications to the simple JinXin relaxation model both in one and two space dimensions. Next, we show how to extend the above methodology to the case of kinetic models of BGK type and discuss the challenging case of the full Boltzmann equation. Some numerical results are also presented. Résumé. Nous présentons dans ces notes quelques résultats récents concernant le développement de méthodes hybrides pour les équations hyperboliques et cinétiques. L’ingrédient principal de ces schémas réside dans un mélange pertinent de méthodes particulaires dans les régimes réguliers et de techniques haute résolution de capture de choc dans les zones raides. La clef du développement de ces algorithmes est donnée par le choix d’une bonne représentation hybride de la solution. Après une brève revue des méthodes d’échantillonnage et des techniques Monte-Carlo, nous introduisons des schémas hybrides pour des systèmes hyperboliques avec relaxation et présentons des applications numériques pour le modèle de Jin-Xin, en dimension un et deux. Ensuite, nous montrons comment cette méthodologie s’étend à des modèles cinétiques de type BGK et discutons le cas délicat de l’équation de Boltzmann. Des résultats numériques sont aussi présentés pour ces situations.
منابع مشابه
Fluid Solver Independent Hybrid Methods for Multiscale Kinetic Equations
In some recent works [11, 12] we developed a general framework for the construction of hybrid algorithms which are able to face efficiently the multiscale nature of some hyperbolic and kinetic problems. Here, at variance with respect to the previous methods, we construct a method form-fitting to any type of finite volume or finite difference scheme for the reduced equilibrium system. Thanks to ...
متن کاملAsymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review
Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review Abstract. Kinetic and hyperbolic equations contain small scales (mean free path/time, Debye length, relaxation or reaction time, etc.) that lead to various different asymptotic regimes, in which the classical numerical approximations become prohibitively expensive. Asymptotic-preserving (AP) schemes are...
متن کاملAsymptotic Preserving (ap) Schemes for Multiscale Kinetic and Hyperbolic Equations: a Review
Kinetic and hyperbolic equations contain small scales (mean free path/time, Debye length, relaxation or reaction time, etc.) that lead to various different asymptotic regimes, in which the classical numerical approximations become prohibitively expensive. Asymptotic-preserving (AP) schemes are schemes that are efficient in these asymptotic regimes. The designing principle of AP schemes are to p...
متن کاملA meshless technique for nonlinear Volterra-Fredholm integral equations via hybrid of radial basis functions
In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...
متن کاملEfficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations
Many kinetic models of the Boltzmann equation have a diiusive scaling that leads to the Navier-Stokes type parabolic equations as the small scaling parameter approaches zero. In practical applications, it is desirable to develop a class of numerical schemes that can work uniformly with respect to this relaxation parameter, from the rareeed kinetic regimes to the hydrodynamic diiusive regimes. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005